Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.
نویسندگان
چکیده
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
منابع مشابه
Supporting Information Local transport measurements in Graphene on SiO2 using Kelvin Probe Force Microscopy
متن کامل
Carrier type inversion in quasi-free standing graphene: studies of local electronic and structural properties
We investigate the local surface potential and Raman characteristics of as-grown and ex-situ hydrogen intercalated quasi-free standing graphene on 4H-SiC(0001) grown by chemical vapor deposition. Upon intercalation, transport measurements reveal a change in the carrier type from n- to p-type, accompanied by a more than three-fold increase in carrier mobility, up to μh ≈ 4540 cm(2) V(-1) s(-1). ...
متن کاملAmperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite
Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...
متن کاملLocalized resistance measurements of wrinkled reduced graphene oxide using in-situ transmission electron microscopy
The tunable electrical properties of reduced graphene oxide (rGO) make it an ideal candidate for many applications including energy storage. However, in order to utilize the material for applications it is essential to understand the behavior of the material on the nanoscale, especially how naturally occurring phenomena like wrinkling affect the electronic transport. Here, we use a transmission...
متن کاملTitle of Document : KELVIN PROBE MICROSCOPY STUDIES OF EPITAXIAL GRAPHENE ON
Title of Document: KELVIN PROBE MICROSCOPY STUDIES OF EPITAXIAL GRAPHENE ON SiC(0001). Alexandra Elizabeth Curtin, PhD., 2011 Directed By: Professor Michael S. Fuhrer, Department of Physics, Center for Nanophysics and Advanced Materials (Director) and the Materials Research Science and Engineering Center. Epitaxial graphene on SiC(0001) presents a promising platform for device applications and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 24 24 شماره
صفحات -
تاریخ انتشار 2013